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P61ya's enumeration theory and its generalizations are refined to count 
derivatives of symmetrical parent compounds with any specified subsymmetry. 
Equivalently, enumeration of orbits of mappings, upon which a group acts 
by acting on their domain and their range, is refined to count orbits with 
stabilizers in any specified conjugacy class of subgroups. 
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I. Introduction: The problem of substitution symmetry 

Suppose that the corners of a cube are to be colored, four of them black, the 
other four ones white. By inspection one finds seven distinct figures: 

Fig. 1 Fig. 2 

Fig. 6 Fig. 7 

Fig. 3 Fig. 4 Fig. 5 

There are further colorations, of course, but any of these can be transformed 
into one of  the Figs. 1-7 by a suitable proper rotation from the point symmetry 
group of the cube. 
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Fig. 8 

Hence the Figs. 1-7 exhaust all possible colorations - up to spatial orientation. 
If we agree upon non differentiating between mirror image colorations as well, 
Figs. 1-5 remain distinct while one of the Figs. 6 and 7 becomes superfluous. 
Thus, according as the proper rotational or the full rotation/reflection symmetry 
of the cube is taken into account, we are left with 7 or 6 symmetry types of 
colorations, respectively. Suitable translations of the terms "corners of a cube", 
"colors" and "symmetry group of the cube" yield numerous variations on this 
theme, like e.g. 

i) Permutational isomers 

corners of a cube-~ sites of a molecular skeleton 
colours ~ types of (unidentate, structureless) ligands 
symmetry group of the cube ~ symmetry group of the skeleton. 

The symmetry types of colorations correspond to permutational isomers, or 
to enantiomeric pairs of permutational isomers and achiral ones, respectively. 

ii) Graphs 

corners of a cube ~ edges of a regular n-simplex 
colors ~ black, white 
symmetry group of the cube-~ symmetry group of the regular n-simplex 

(proper and improper operations). 

The symmetry types of colorations with m edges coloured black, the rest of 
them white, may be interpreted as unlabeled graphs with n vertices and rn 
edges. 

Besides the gross enumeration of symmetry types, which is largely covered by 
the well-known Pdlya method [1], there is a variety of more intricate enumeration 
problems which might be termed "enumeration of symmetry types with prescribed 
structural properties". Referring to permutational isomers, the most immediate 
and important structural property is their point symmetry (its counterpart for 
graphs being their automorphism group). It is evident, that the point symmetry 
of permutational isomers depends on the composition of the ligand assortment. 
While "homosubsti tuted" derivatives (ligands of the same type exclusively) have 
the symmetry of the skeleton, "heterosubstitution" (ligands of different types) 
will generally destroy some of the symmetry elements, thus leading to a subsym- 
metry of the skeleton symmetry. In the limiting case of exclusively different 
ligands there is no symmetry left at all - apart from symmetry operations fixing 
all the sites, as occur with planar or linear skeletons. 
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This paper investigates problems in "substitution symmetry", a typical question 
being: given a molecular skeleton with n sites and an assortment of nl + n2 +" �9 �9 + 
n~ = n ligands of  types 1 , 2 , . . . ,  A, how are the symmetries of the permutational 
isomers distributed among the various subsymmetries of the skeleton symmetry? 

For the introductory example, inspection provides the following result, where 
proper rotational and rotation/reflection symmetries have been listed separately. 

Table 1. 

1 2 3 4 5 6 7 

Proper rotational symmetry T C 4 D 2 C 3 E C 2 C 2 

Rotation/reflection symmetry T d C4~ D2h C3v C s C 2 C 2 

To be more specific, this article provides solutions to the following questions: 
given a symmetric molecular skeleton, 

i) which subsymmetries can be reached at all by substitution? 
ii) which is the number of derivatives, with ligands of A given types, and with 

some specified subsymmetry? 
iii) how many permutational isomers are there, for a given gross formula 

n~, n 2 , . . . ,  n~, and with some specified subsymmetry? 

We do not restrict ourselves to the case of structureless ligands, i.e. where 
symmetry operations of  the skeleton merely permute the positions of ligands, 
but we also admit some ligand structure, to the effect that symmetry operations 
act on the ligand types as well, as e.g. occurs with reflections in the presence of 
chiral ligands. 

Of course, our results are not restricted to discussing the symmetries of derivatives 
of symmetrical parent compounds (though this is the typical application that we 
have in mind). It refers to orbits of mappings between finite sets, upon which a 
group acts by either acting on the domain, exclusively, or by acting both on 
domain and range, simultaneously. These are the settings considered in P61ya's 
enumeration theory [1] and its generalizations by de Bruijn [2], Harary [3, 4], 
and many others. Our presentation follows that of a recent paper [5], where the 
present author proposes a natural generalization of de Bruijn's and Harary's 
power group approach. The results of this note apply to whatever discrete 
structures, that are parametrized by orbits of mappings between finite sets. 

The general problem behind that of substitution symmetry may be stated as 
follows: Given a set on which a group acts, which is the number of orbits with 
stabilizers in a given conjugacy class of subgroups? It turns out that this is the 
permutation representation analogue of the well-known problem to determine 
the multiplicity of an irreducible linear representation in a reducible one. The 
notions as well as the basic results of this theory are quite old; they already go 
back to Burnside [6], with modern presentations given by Dress [7] and by 
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Knutson [8]. The related question of how to resolve a compound permutation 
character into a sum of simple ones was treated by Foulkes [9, 10]. But it remained 
for Stockmeyer [11] and White [12] to provide explicit answers. Later, Plesken 
[13] covered these results by a general theory of groups acting on lattices, and 
Kerber and Thiirlings [14, 15] derived generating functions for the numbers of 
symmetry types of mappings with specified stabilizer class and content, while 
simultaneously and independently the present author was active in this field as 
well [16]. This treatment aims at implementing these results into chemical com- 
binatorics, some part of which program is covered by a short account of Davidson 
[17], and to extend them to simultaneous action of a group on the domain and 
the range of mappings. Last but not least, to our feeling, the present paper 
provides the by far most simple access to the results in the mathematical literature. 

2. General theory: Orbits and their symmetries 

A finite group G is said to act on a finite set M if the elements of G act as 
permutations on M, more explicitly, if to each g e G a permutation o,g e Sym (M) 
is associated such that the mapping or: g~->Crg is a homomorphism from G to 
Sym (M),  the symmetric group of M. That is 

CrgCrg,=crgg, forany g, g' e G. (1) 

Synonymously, M affords a permutation representation of G, or M is a G-set. 
The action of the group G induces an equivalence relation on the set M, 

m ' -  rnc~ 3g e G: rn'= O'g(m), (2) 

due to which this set decomposes into equivalence classes, its orbits with respect 
to the group action. For m e M, the symbol O~(m) will denote the orbit that 
contains m, so 

O~(m) := {m'= o'g(m)[g e G}. (3) 

The action of G associates to each m e M a subgroup of G, its stabilizer 

G~ := {g e Glcrg(m ) = m}, (4) 

which is related to the orbit O~(m) by the fact that the orbit length IO~(m)l, i.e. 
the number of elements in the orbit, is given by the stabilizer index. 

IGI IO (m)I--IGml" (5) 
By the dual construction, a subset of M is assigned to each group element g e G: 
the set Mg of its fixed points, 

Mg := {m e  M[crg(m) = rn}. (6) 

The numbers of fixed points, 

f (g)  := IMg[, (7) 

provide the key to the enumeration of orbits through the 
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Cauchy-Frobenius Lemma 1. The number of orbits of a G-set equals the average 
number of fixed points of the group elements. 

1 
no. of orbits = ( f ( g ) ) g ~  := ~-~ ~ f ( g ) .  (8) 

g ~G 

Example 1. Symmetric polyhedra provide immediate illustrations of the notions 
mentioned above. Any covering operation of a polyhedron induces a permutation 
of  its corners as well as of  its edges, its faces and so on, and the effect of two 
consecutive covering operations is the same as that of their product (by the very 
definition of composition for covering operations). So, e.g., let M denote the set 
of corners of a symmetric polyhedron and let G be its point-symmetry group. 
Any covering operation g c G results in a permutation trge Sym (M)  of the 
polyhedron's corners, such that trg~rg, = Crgg, holds 2 for any two elements g, g' ~ G. 
So G properly acts on M. The orbits of this action are the subsets of  symmetry 
equivalent corners, the stabilizer of a corner accounts for its site symmetry, and 
fixed points are points on the rotation axis for proper  rotations, and points in 
the mirror plane for reflections. 

Symmetry-equivalent corners have the same site-symmetry. This observation is 
covered by the general fact, that elements in the same orbit have conjugate 
stabilizers. In fact, 

Gg,. = gG,,,g -1 (9) 

holds, where we have abbreviated trg(m) to gm. Moreover, as m'~ O~(m) runs 
through an orbit, the stabilizers Gin, run through a complete conjugacy class of 
subgroups of  G (possibly several times), say 

H := { H ' =  gHg-llg ~ G}, (10) 

for Gm= H. Hence any orbit is associated with a conjugacy class of subgroups, 
which we are going to refer to as to the symmetry of that orbit, since conjugate 
subgroups of a point-symmetry group constitute Symmetry-equivalent realizations 
of the same subsymmetry. 

The natural question then is: given a G-set M and a conjugacy class 8 of 
subgroups of G, how many orbits with symmetry H are there? Let us denote this 
number by oH, so 

o ,  := no. of orbits, consisting of elements with stabilizers in H. (11) 

Which is usually, but erroneously, attributed to Burnside, cf. [18] 
2 Depending on whether symmetry operations are defined with respect to spatially-fixed or to 
body-fixed symmetry elements, and whether permutat ions are interpreted in the passive or in the 
active way, ~r: g~--~o'g is either a proper homomorph ism (%%,=O-gg,) or an an t ihomomorphism 
(o-gtrg, = trg.g). Since the notion of  group action could as well be defined in the latter fashion, with 
all results remaining to be the same, this makes no essential difference. Moreover, if so desired, such 
'flaw of  beauty '  can be easily eliminated by taking inverses 
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I f  G,, = H, then among the Gin, with n ' e  O o ( m )  the conjugates g H ~  ~ all occur 
equally often. Hence oH is proportional to the number  

s ,  = no. of  elements of  M with H as their stabilizer. (12) 

The precise relation between oH and s , ,  with H ~ H being of course arbitrary, reads 

IGI/IHI 
s . = o . .  [HI ' 0 3 )  

where the enumerator,  (GI/ (Ht ,  is the common length of  all the orbits with 
symmetry H, and where [H] denotes the number  of  subgroups in the conjugacy 
class H. 

As a rule, these numbers are much harder to calculate than a related third number, 
namely the number  in of H-invariant  elements of  M, i.e. the number of  m E M 
which are common fixed points to all the h ~ H in a given subgroup H of (7. 

iH := no. of  elements m c M with hm = m for all h E H. (14) 

As we shall see, given all the ill, we can (at least in principle) calculate the sH, 
and from them our final objects, the numbers oH, are obtained by multiplication 
with a simple factor. Let us start from an equivalent expression for the numbers 

i ,  = no. of  m E M with Gm >i H, (15) 

where we use the signs i> and ~ ,  respectively, to denote the subgroup relation, 
i.e. H ~< t3 as well as G >1 H means that H is a subgroup of  (3. From the expression 
above, the following equation is obvious 

iu = Z SK. (16) 
H ~ K ~ G  

We rewrite it in the form 

i .  = E ~(H, K)s,.,  (17) 
K ~ G  

where 

~ ' ( H , K ) = { ;  i f H  <~K �9 
otherwise 

With a suitable numbering of the subgroups of G, e.g. according to their car- 
dinalities, the matrix of  the coefficients ( (H,  K)  is triangular, with diagonal 
elements all ones. These matrices are invertible; so there are coefficients IX(H, K)  
by means of which the system (17) of linear equations is solved, i.e. such that 

s .  = E Ix(H, K)iK.  (18) 
K ~ G  

In more advanced terms, ~" is the Zeta-function of the subgroup lattice of  G, IX 
is its M/Sbius-function, and the numbers sH are obtained from the iH by M6bius 
inversion, cf. [193 for an introduction to these notions. 
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The size of  the system (t7) of linear equations can be reduced from the number 
of subgroups of G to the number of conjugacy classes of such subgroups by 
using the fact that both the sH and iH are constant on classes of conjugate 
subgroups. The matrix associated with the Zeta-function, reduced to conjugacy 
classes of subgroups by partial summation, then yields the so-called table of 
marks of  G, a notion which is due to Burnside [6]�9 

Let us now proceed along these lines. So, for this purpose, let 3- be a transversal 
from the conjugacy classes of subgroups of  G, i.e. a collection of subgroups, one 
from each conjugacy class. Then the reduced form of (17) reads 

iH = E [H<~]sK, (19) 
K e J  

where, of course, H also runs through ~-, and where the coefficient [H  ~< ~]  
denotes the number of conjugates of K that contain H as a subgroup. Since it 
is the orbit numbers o~ that we are looking for, we include the proportionality 
(13), yielding 

i .=  E IGl[H~nq 
K=~ IK[[~] oK. (20) 

The matrix of the coefficients 

M"~:= Igl[~] (21) 

is called the table of marks of the group G. Let us now write i• for the constant 
number im H ~ H. Then we may summarize our result as follows. 

Theorem. Let M be a G-set. Then the numbers oK of orbits with symmetry ~, 
being a conjugacy class of subgroups of G, constitute the solution of the system 

of linear equations 

iH= Y. MH~o~, 

where the coefficients are the entries of the table of marks of G, and where i n is the 
number of H-invariant elements of M, for any subgroup H from the conjugacy class 

It is important to note that the table of marks does not depend on the particular 
G-set but only on the structure of the subgroup lattice. So it is the same in any 
problem, and it is a reasonable task to tabulate these objects, which will be done 
for the point-groups in collaboration with A. Kerber/Bayreuth [20]. The second 
�9 . I 
mgredaent that is needed in order to calculate numbers of orbits with specified 
symmetry, are the fixed point numbers in, and that is where the particular 
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permutation representation enters. Let us close this paragraph with a very simple 

E x a m p l e  2. 

4 

l 
5 

Fig. 9 

fixed point numbers 

it,3= 1 

i q  = 3 

i c  2 = ic~ = ic,~ = 2 

i t = 6 

A trigonal bipyramid, 

G =  D3 ={e, c3, c 2, c2, c~, c~} 

M = { 1 ,  2, 3, 4, 5, 6} 

subgroup lattice 

D3 

/ 
C3 

\ 
E 

c2 cl c~' 

Fig. 10 

,c3/ 1 2 0  /oc3| 
,~2 / 1 0 1  /ocq 
t~ _l 1 2 3 L oE d 

oD3-- 1, Oc3-- 1, Oc~ = 1, oE=O, 

in agreement with the subsequent sketch of  these orbits. 

Fig. 11 

3. Orbits of  mappings and their symmetries 

We are now going to apply the general results of the preceding paragraph to 
G-sets of a particular type: to sets of mappings between two finite sets, on which 
a group acts by acting on the domain, and, possibly, on the range as well. The 
first one is the typical scenario of P61ya's theory [1]. It starts from a G-set P, 
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and from another finite set L (witbout any group action on it), and next considers 
the set L p of all mappings from P to L 

LP := {q~lr P ~  L}. (22) 

Let ~rg 6 Sym (P) denote the permutation by which g~ O acts on P. Then 

g: ~ q ~  ~ Ir~ -~ I 

defines an action of G on L p. Here the symbol o is used for the composition of 
mappings, that is, for a mapping q~ and a permutation or, q~ or denotes the 
mapping that takes i c P into q~(1r(i)). The other case of interest is that where G 
acts on L as welt. So let both, P and L, be G-sets on which g6  G acts as 
~-~ c Sym (P)  and Agc Sym (L), respectively. Then G acts on L p by simultaneously 
acting on P and on L according to 

g: q~ ~-', A~ o ~p o -trg I. lI 

This type of action was recently discussed [5] as a generalization of the de Bruijn 
type [2], which arises naturally in "chemical combinatorics" on the next level 
beyond P61ya's pure domain action. 

Since the theory presented here most immediately applies to derivatives of 
symmetrical parent compounds, which we also had in mind when choosing the 
letters P and L for domain and range of mappings instead of D and R, we shall 
use this picture in order to explain why we consider L P with the actions of type 
I and II of a group on it. For this purpose, let P =  {1, 2, 3 . . . .  } denumerate the 
positions (sites), where substitution may take place in a given parent compound, 
and let L = {A, B, C, . . .}  be a collection of ligand types (types of substituents). 
Mappings from P to L obviously represent distributions of ligands of types in 
L over the sites of the molecular skeleton in question, if q~(i) = X is taken to say 
that there is a ligand of type X at site i. Let the skeleton have a non-trivial 
symmetry, and denote by G the corresponding point-symmetry group, by R its 
subgroup of  proper rotations, and by S the coset of  improper rotations and 
reflections. Of course, S need not exist, namely if the skeleton is chiral. In this 
setting, one readily identifies symmetry equivalent distributions, that are mutually 
transformed by proper rotations r e  R, to represent the same derivative. If, 
moreover, enantiomers need not be distinguished, mutual transforms by improper 
rotations s c S are identified as well. Evidently, covering operations of the 
(spatially fixed) skeleton permute the distributions. Moreover, on any distribution, 
the effect of two consecutive covering operations is the same as that of their 
product (by the very definition of  composition for point-symmetry operations). 
So the group acts on the set L P of distributions, and derivatives are orbits with 
respect to its subgroup R, while a G-orbit represents either a mirror image pair 
of chiral derivatives or an achiral compound. 

There are now several possibilities, of increasing complexity, of how this action 
looks like in detail. First and foremost, a covering operation acts on distributions 
by removing the ligands from their original positions to other sites, i.e. by 
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permuting the positions of the ligands. Note that this site permutation is the same 
for all distributions, irrespectively of the kind of ligands that are moved. If the 
ligand symmetry is sufficiently high, this rearrangement will be the only effect. 
Otherwise it may happen that a covering operation, besides moving the ligands, 
also changes their types. For instance, improper rotations and reflections take 
any chiral ligand into its mirror image - wherever it is situated. Finally, and most 
awkwardly to deal with, the fate of a ligand may depend on its initial and final 
position, as will be the case if a ligand type has to be considered a chiral one at 
some sites and an achiral one at others. Let us now translate these descriptions 
of covering operations acting on distributions into definitions of how a group G 
acts on a set L e o f  mappings. This is conveniently done by describing the image 
~' of a general mapping q~ c L e under a general group element g c G. 

First, G acts through site permutations exclusively. So there is a permutation 
representation of G on P, g ~-~ rrg, and g ~ G acts on q~ c L e through taking to 
site 7rg(i)  whatever ligand type X 6 L is assigned to i ~ P by the mapping p. The 
image q~' is therefore given by q~'(Trg(i))= X if ~ ( i ) =  X, equivalently 

~'(i) = ~(~-g'(i)), 

or (23) 

p ' =  q~ o 7rg ~ as a shorthand notation. 

Second, G acts on the ligands as well, irrespectively of their position. So a 
permutation representation of G on L, g ~)tg,  is operative in addition, and g c G 
acts on ~ L  P by taking to 7rg(i) the image X = ~ ( i )  of i under ~p, while 
transforming it into Ag(X). This amounts to ~'(Trg(i))=)tg(X) if q~(i)=X, 
equivalently, 

r  = Ag(~p(Trg'(i))), 

or (24) 

~ ' =  ~g o r o ~r~ I. 

Third, and last, there is  an individual 3 permutation representation of G on L, 
g~-> h(g i), f o r  any site i c  P, and g c  G takes X = r  into A~)(X) -- q~ ' (Trg(i)) ,  i.e. 

~ ' ( i )  = A~')(~o(~-~'(i))). (25) 

The most simple action next to that by pure site permutation occurs in the case 
of derivatives of an achiral parent compound, where the ligands are allowed to 
be chiral (but sufficiently symmetric with respect to proper rotations). The proper 
rotations r ~ R exclusively permute the positions, while improper rotations and 
reflections s ~ S moreover take any chiral ligand into its mirror image. That is, 
the point-symmetry group G acts as follows 

g: ~ ~--~ 3~g o q~ o 7r~ 1, (26) 

3 The same for all sites in an orbit of P 
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where the ~-~ are the usual site permutations, and where Ar = e, the identity 
permutation,  for all r ~ R, and As = T, the product  of  transpositions (XX*)  of 
mirror image ligand types X and X*,  for all s c S. Of  course we assume that X* 
is in L if X is. 

Our final objects are the numbers of orbits with specified symmetry. For their 
calculation we need, apart from the table of marks of the group in question, the 
fixed point numbers iH for a transversal of  the conjugacy classes of  subgroups 
of G. 

So, first, let a group G act on L ~ by site permutations exclusively, i.e. according 
to 

g: q~ ~ ~ o ~.~1. (27) 

A mapping ~o is a fixed point to all the elements h in a given subgroup H <~ G 
if and only if 

q~(Trh(i)) = ~(i)  for any i c P, h 6 H. (28) 

In other words: ~ has to be constant on the H-orbi ts  of  P. Let P / H  denote the 
collection of  these orbits and [P/H I their number. Then H ~< G has 

ILl ~/ '< (29) 

fixed points in L P. Making use of the general result of  Theorem 1 we end up with 

Corollary 1. Let a group G act o n  L e by acting on P exclusively. Then the numbers 
oK of orbits with symmetry K constitute the solution of the system of linear equations 

ILl t~'/'l -- • M.Ko~. 

In case that G acts on L P by simultaneously permuting sites and ligand types, 
i.e. according to 

g: ~ ~--~ Ago ~ o r g l ,  (30) 

the fixed point numbers iH are obtained in a similar manner. A mapping ~ is 
H-invariant  if and only if, for any h ~ H, Ah ~ ~ = ~ o ~'h. That is: the images under 
q~ of the sites in an H-orbi t  of P have to match each other in the sense that 

~(i) = x ~ ( ~ h ( i ) )  = ; , h ( x ) .  (31) 

Moreover,  the image of any site i c P has to be invariant under the H-stabilizer 
of  i, 

~ ( i ) - - X  and 7rh(i)= i ~ A h ( X ) =  X. (32) 

So let Tn c p be a transversal (i.e. a system of representatives) from the H-orbits  
of  P. For t ~ TH, let Ht denote its stabilizer. Finally, let f (H , )  denote the number  
of/-/~-invariant elements of  L. Then, from the previous necessary and sufficient 
condition, the number  of  fixed points in L P, common to all elements of  a subgroup 
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H ~< G follows to be 

W. H~isselbarth 

l-I f ( H , ) ,  (33) 
t~T  H 

since, for any H-orbit  of P, the image of one site t determines those of all the 
other sites, and this single image moreover has to H,-invariant. Evidently, this 
expression reduces to the previous one, (29), in case that H acts trivially on L. 
Summarizing, we have 

Corollary 2. Let a group G act o n  L P by acting on P and on L simultaneously. Then 
the numbers oK of orbits with symmetry • constitute the solution of the linear system 

I-[ f (H~)=Z MHKOK. 
tC TH K 

Let us apply this result to the case of chiral ligands, i.e. G = R �9 S acts according 
to 

g:  ~ ~--)ag o q~ o 77"71, 

a r = e  for a n y r e R  
where t A s = r  for a n y s c S '  

(34) 

e being the identity permutation, while r replaces each chiral ligand type by its 
mirror image. 

If  H <~ R is a subgroup of proper rotations, the expression (33) for its fixed point 
number reduces to 

= ILl (35)  

where the exponent is the number of H-orbits of P. Now let H contain improper 
rotations and reflections as well, H c~ S r •. Then the crucial point is whether 
the H-stabilizer H, = H c~ Gt of some site t consists of proper rotations exclusively 
(Ht ~< R), or whether it includes improper ones as well (Hi c~ S # Q). For ration- 
alizing the final result, let us call a site i e P to be H-chiral, if Hi c~ S = Q, and 
H-achiral,  if Hi c~ S r ~ ,  of course. Denoting by Cn and AH the subsets of P of 
H-chiral and H-achiral sites, respectively, and, finally, by L~ the subset of L of 
achiral ligand types, we end up with the expression 

ILl [CH/H]. ]Lc~[ ]AH/I-I[ (36) 

for the fixed point number of a subgroup H. As before IP/HI, the exponents are 
the numbers of H-orbits of the sets in question. The fact that, in any invariant 
distribution, exclusively achiral ligands are at achiral sites, properly matches 
intuition. As an example, only such distributions can be invariant under a 
reflection that have exclusively achiral ligands in the mirror plane. 
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Example 3. A trigonal pyramid 

~. G = C3~ = {e, % c~, or, or', o'"} 

P = {1,2,3,4} 

L={A, C, C*}, an achiral ligand type and 
image pair of chiral ones 

1 3 

Fig. 12 

a mirror 

subgroups table of marks 

C3={e, c3, e~} 2 0 

O" = {e, cr}, and conjugates 0 1 

E={e}  2 3 

C3~: orbits of achiral sites {1, 2, 3}, {4} 

C3: orbits of sites {1, 2, 3}, {4} 

orbits of achiral sites{ 1 }, {4} 

orbits of chiral sites {2, 3} 

orbits of sites {1}, {2}, {3}, {4} 

O': 

E: 

where we have chosen ~r to be the reflection at the plane through 1 and 4. The 
fixed point numbers then are 

C3v: 12, C3:32, or: 1231, E: 3 4. 

The numbers of C3~-orbits with the corresponding symmetries are given in the 
next line 

C3v: 1, C3: 4, U: 2, ~: 11. 

Let us check these numbers by drawing some figures, where we have to note that 
a C3~-orbit either corresponds to a single chiral compound or a mirror image 
pair of chiral ones. So orbits with symmetry C3v, ~ belong to the first category, 

A 

$3v 
A A 

C A C 

A A C C C C C 

~3 
C 

Fig. 13 
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C'* A C "/r C 

C lit C* C* C'* C* C* 

A A 

C C* C'* C 

Fig. 13 (cont.) 

while those of symmetry C3, [~ make up the second one, and there are 11 more 
mirror image pairs of derivatives without any symmetry. In comparison, with 
three achiral ligand types, L =  {AI, A2, A3} , the fixed point numbers and the 
numbers of  orbits for the subsymmetries of C3v turn out as follows 

C3v: 3 2, C3:3 2, O': 3 3, E: 3 4 

Car: 9, Ca'- 0, C: 18, E: 3. 

Finally, for two achiral types, L = {A, B}, the corresponding result is 

C3v: 2 2, C3:2 2, O': 2 3, E: 2 4 

C3v: 4, C31 0, C: 4, I:: 0. 

A B B A 

A A '  A B B B B 

A B B A 

A A A B '  B B B 

Fig. 14 

As a general rule, replacing pairs of achiral ligand types by mirror image pairs 
of chiral ones does not change the number of derivatives. However, it increases 
the number of chiral ones at the expense of achiral compounds. 

Explicitly, among the compounds deriving from an achiral parent with point- 
symmetry group G = R �9 S and from 1 = l,~ + l x ligand types, 15 achiral ones and 
�89 x enantiomeric pairs, there are 

z,~ = ( l C ~ 1 7 6 1 7 6  
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achiral ones, while their total number is 

z = zo~ + z~ : (IC(~'~),~R. 

In these expressions, the brackets denote averages over the improper  rotations 
and reflections, and over the proper rotations, respectively, in the point-symmetry 
group. The c's stand for the numbers of  cycles, with even lengths, with odd 
lengths, or in total, in the disjoint cycle decomposit ion of the site permutations 
in question. Clearly, then, if the number I~ of achiral ligand types is reduced at 
the expense of the number  l~ of chiral ones (i.e. while keeping their sum l = l~ + l~ 
constant), the number  z~ of achiral derivates likewise decreases at the expense 
of the number  z x of  chiral ones. More precisely, z~ never increases. It is at most 
constant, and this happens if (and only if) there are no improper  symmetry 
operations s c S that mutually permute an odd number  of sites. The most simple 
such case is that of  a parent compound with a mirror plane as its only symmetry 
element, and with two symmetry equivalent sites outside that plane. 

Fig. 15 

With two achiral ligand types A and B there are four compounds AA,  AB, BA, 
BB, among which A A  and BB are achiral while AB, BA are enantiomers. With 
two mirror image chiral types C and C*, however, it is just the other way around: 
the two meso isomers CC* and C*C are achiral, while CC and C ' C *  constitute 
a mirror image pair. 

Ascent in symmetry from Cs to C=~, like in the figure below, reduces the number  
of  derivatives from four to three. At the same time, it turns the previous "excep- 
tional" case into a "normal"  one, i.e. now passing from {A, B} to {C, C*} reduces 
the number  of  achiral compounds at the expense of the number  of  chiral ones. 

1 j ~ 2  

Fig. 16 
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AA and BB remain to be achiral, of course, while the former mirror image pair 
AB, BA collapses into a single achiral compound AB = BA. On the other hand, 
CC and C'C*  remain to be chiral, while the former two achiral meso forms 
CC* and C* C coincide. 

4. Substitution symmetry and gross formula 

In the manner  of  writing H20 instead of H20, the gross formula attributes to any 
mapping ~: P ~ L a monomial  

GF(q~):= [I X J~(x), (37) 
X e L  

where J~,(X) is the number  of  times that X e  L appears as the image of a site 
i e  P, i.e. J~(X)  =no .  of  i e  P such that q~(i) = X .  The function Jr is called the 
content of  the mapping q~, and this is the customary object in the mathematical  
literature, while we keep closer to chemistry by using the gross formula monomial  
instead. 

Evidently, the gross formula of  mappings from P to L is invariant under site 
permutations ~- e Sym (P).  Hence it is, of  course, invariant under the action of 
any group G via site permutations ~-g, 

g: q~ ~ q~ o ~.~l. (38) 

Therefore, all the subsets of  L e for the various possible gross formulas are 
G-subsets, i.e. they are closed with respect to the action of G, which makes them 
G-sets by themselves. We may therefore ask the same questions as before with 
reference to these G-subsets of L P i.e. ask for the number  of  derivatives with 
specified symmetry and gross formula. So we need to know the corresponding 
fixed-point numbers. In the present case of  type I actions, a mapping ~ e L P is 
H-invariant ,  i.e. a common fixed-point to all the elements h e H of a subgroup 
H ~< G, precisely if it is constant on the H-orbi ts  of P. So we may sum up the 
gross formula monomials  of the H-invariant  mappings as follows 

(H-inv.) (H-inv.) 

= E II O(Q) 101 
OEL P/H Q e P / H  

Q e P / H  \ X e L  / 

Here P / H  denotes the collection of H-orbi ts  of  P, with Q varying through this 
set, and Ig[ being the length of the orbit Q. Finally, pk(H) is used to denote the 
number  of  H-orbi ts  of  P with length k. The essential step in performing this 
summation is the interchange of sum and product, a well-known trick in P61ya 
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enumeration theory. From the previous expression we can obtain the numbers 
of  H-invar iant  mappings,  for any gross-formula, by expanding the polynomials 

 40) 

into sums of monomials.  Evidently, 

[l x k  =~.i(H,J) lJ X j(x), (41) 
k ~ l  L J X ~ L  

where the right hand sum is over all possible contents of  mappings from P to 
L, i.e. the right hand expression is the sum of all possible gross formula monomials,  
with the corresponding numbers i(H, J) of H-invariant  mappings as their 
coefficients. So we have found 

Lemma L I f  G acts by site permutations exclusively, the generating function for 
the numbers i( H, J) of H-invariant mappings with content J is given by the polynomial 

That is: the numbers i( H, J) are the coefficients of the monomials 

[I X J~x) 
X E L  

in the expression above, where pk(H) denotes the number of H-orbits of P of 
length k. 

I f  G acts on L as well, the gross formula of mappings is no longer invariant 
under G, i.e. the gross formula is not a common property to all the mappings 
within an orbit any more. For example, if G is the point-symmetry group of an 
achiral skeleton, and if chiral ligands are admitted, mirror image chiral com- 
pounds have mirror image gross formulas, unless the gross formula is racemic. 
But the way out is pretty obvious [5]. Let G act on L P according to 

g :  ~ ~-->)tg o q~ o "n'g 1. (42) 

Then G acts on the set of gross-formula monomials  in a natural fashion 

g: 17 X J(x)~--~ II Ag(X) J(x). (43) 
X c L  X E L  

Let us now define a generalized gross formula to be an orbit of  monomials  over 
L. These orbits are the natural substitutes of  gross formulas, when the group in 
question acts on the ligands as well, since the gross formula of  mappings within 
an orbit ranges precisely over an orbit of  gross formulas. So the subsets of 
mappings with GF in a given GGF constitute G-subsets of  L e again, and we 
may ask for the distribution of their orbits over the various subsymmetries of G. 
We will again need the corresponding fixed-point numbers, and we will proceed 
in the very same manner  as before, by summing up the GF of the H-invariant  
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mappings, resulting in a generating function for the numbers i(H, J) of H- 
invariant mappings with content J. Summing these, in turn, over the GF within 
a GGF, provides us with the fixed-point numbers we need. Let us skip the 
computation and only state the result. 

Lemma 2. I f  G acts through permutations of sites and of ligands, simultaneously, 
the generating function for the numbers i( H, J) of H-invariant mappings with content 
J is given by 

1-[ ( ~ ~ yIO.(Ol/lO~(X)l). 
tET H X e F i x ( H t )  YCOH(X) 

Here T H is again a transversal from the H-orbits of P, Fix(Ht) denotes the set of 
Hr in L, and On( �9 ) is an H-orbit of sites or ofligand types, respectively. 

We will apply these results to example 3, thus refining the previous calculation. 

Example 3': 
l., 

Fig. 17 

A trigonal pyramid, G = C3~ 

L = {A1,  A2,  A3} , three achiral types 

generating function of the i(H, J):  

[ k ~pk(H) k~_l Y~ X 

subgroup orbit lengths 
C3v 3, 1 
C3 3,1 
o- 2, 1,1 
E 1, 1,1,1 

generating function 
( a3+  3 3 Az+ A3)(A~ + A2+ A3) 
(A) + A3 + A~)(AI + A2+ A3) 
(A~+ ~ A2+A3)(A1 +A2+A3) 2 
(AI + A2 + A3) 4. 

The next two tables display the fixed-point numbers i(H, J) and the inverse of 
the matrix of marks, while the final one gives the numbers of orbits, o(H, J),  
with specified symmetry and gross formula. Of course we need not consider all 
the possible monomials A'~'A'~2A~ 3, but only one of each type, i.e. for each partition 
of the number 4 into at most three parts, 4 = nl + n2 § n3. So we take nl -> n2-> n3. 
There are, evidently, 3GF of type A 4, 6GF of type A~A2, 3GF of type A~A~, 
and again 3 G F  of type A2AzA3 . 

Table  2. 

i(H, L) A~ A)A2 AIAz2 2 A2A2A3 

C3~ 1 1 0 0 1 �89 0 

C 3 1 1 0 0 0 1 
1 1 

O" 1 2 2 2 6 2 g-3 

E 1 4 6 12 
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Table  3, 

o(H, J) A 4 A~A 2 2 2 A IA  ~ A2A2A3 

C3~ 1 1 0 0 

C3 0 0 0 0 

~D" 0 1 2 2 

E 0 0 0 l 

A 1 

A,,J  A, 
$3V 

A 2 

A~ A 1 
Szv 

A1 

A~ A I 
a 

A1 

A2 A 1 

lY U 

A a Az A 1 

AI AI AI AI AI Az 
<IT <D- tE 

Fig. 18 

The second part  of  this example refers to L = {A, C, C*}, one achiral type and 
a mirror image pair of  chiral ones. The generating function to be used is 

t~TH X~ (H~) Y ~ O . ( X )  
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Table 4. 

subgroup H TH the H~ the Fix(Ht) 

C3~ 1, 4 0% C3~ {A}, {A} 
C 3 1,4 E , C  3 L , L  
or 1, 2, 4 O', E, O" {A}, L, {A} 
E 1,2,3,4 E , E , E , E  L , L , L , L  

Table 5. 

subgroup H generating function 

C3v A 4 
C 3 (A3q - C3q - C*3)(Aq - C+  C*) 
O" (Az + 2 c C * ) A  2 

E ( A + C + C * )  4 

The  nex t  t ab l e  a g a i n  d i sp lays  the  f ixed -po in t  n u m b e r s  i ( H ,  J ) ,  for  a n y  r acemic  

gross f o r m u l a  a n d  o n e  f rom each  m i r r o r  i mage  pa i r  o f  chira l  gross fo rmulas .  In  
the  last  t ab le ,  the  orb i t  n u m b e r s  are given,  specif ied by  s y m m e t r y  a n d  gene ra l i zed  
gross fo rmu la .  

Table 6. 

fixed point 
numbers A 4 C 4 A3C C3A C3C * A2C 2 C2C .2 A2CC * C2C*A 

C3v 1 0 0 0 0 0 0 0 0 

(23 1 1 1 1 1 0 0 0 0 

O" 1 0 0 0 0 0 0 2 0 

E 1 1 4 4 4 6 6 12 12 

Table 7. 

orbit C 4 A3C C3A C3C * A2C 2 C2C*A 
numbers A 4 C .4 A3C * C*3A C '3C A2C .2 C2C .2 A2CC * C*2CA 

c3~ 1 0 0 0 0 0 0 0 0 

c 3 0 1 1 1 1 0 0 0 0 

O 0 0 0 0 0 0 0 2 0 

E 0 0 1 1 1 2 1 1 4 

We  have  a l r eady  s h o w n  the  figures wi th  symmet r i e s  C3~, C3, a n d  U. So it r e m a i n s  
to d i sp l ay  the  11 m i r r o r  image  pairs  wi th  no  s y m m e t r y  at all. We  give on ly  one  

f rom each  pair .  
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C 

C C 

C 

C C 

C 

A C 

A 

C ~ 

C C 

C'k 

A A 

A 

Fig. 19 

C Ik 

C C 

C C 

C ~ C ~ C 
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Choosing our examples among the derivatives of achiral parent compounds, 
admitting chiral (but otherwise sufficiently symmetric) ligands, amounts to the 
most simple case of non-trivial action of G on L besides that on P. Somewhat 
more vivid action takes place in distributions of arrows over the corners of a 
regular polygon, where the arrows may point upward, downward, clockwise, 
counterclockwise, or to the center. An example of this type was employed in a 
preceding paper [5] in another context, namely for a square. We do not use this 
example here, because its symmetry group D4h already has more than ten 
conjugacy classes of subgroups. The subgroup D 4 of proper rotations is better 
manageable, with eight being the number of  classes, but then the action is 
equivalent to that in the chiral ligand cases. 

If G acts by site permutations exclusively, the use of generating functions can 
be avoided, since there is a simple closed form expression available [16] for the 
fixed-point numbers i(K, J). This is, of course, much more satisfactory from the 
theoretical point of view, but it also has practical implications in case that one 
is not interested in the complete set of data for the various gross formulas but 
rather for some single such contents. 

So we let again G act on L v by acting on P, 

g: ~0 ~ ~ o ~rg 1, (44)  

and we ask for the number of K-invariant mappings of content J, with K a 
subgroup of G. The key to these numbers is provided by the observation, that 
the subsets of mappings with some fixed content are just the orbits of the symmetric 
group Sp 4 which acts o n  L P according to 

7r: q~--~ q~ o 7r -1 (45) 

Evidently, site permutations do not change the content of mappings, and, in 
reverse, any two mappings with the same content can be mutually transformed 
by some site permutation. The stabilizer of a mapping ~ is a direct product of 
symmetric groups, each of them referring to one of the "homogeneously sub- 
stituted" subsets of sites, 

q - ' ( X )  := {i c Plq~(i) = X}, (46) 

i.e. to the sets of preimages of the ligand types in L. Permutation groups of this 
type are often [21] called Young-subgroups (of the symmetric group in question), 
and therefore we denote this stabilizer by Ye. Explicitly, we then have 

{~r~Splq~o ~r-l=~o}= Y~= X S~-l(x). (47) 
X E L  

Now let K be a subgroup of G, and denote by K (v) its image as a group of site 
permutations 

K (P) := {Tr~ e Splk 6 K}. (48) 

4 Now we wri te  Sp as a short  form of  Sym (P) .  
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It immediately follows, that a mapping ~ is K-invariant if and only if K (P) <~ Y~,. 

This is the starting point for calculating the number i(K, J) of K-invariant 
mappings with content J as follows. Let ~0 be a mapping with this content. Then 
we already know from the previous observations, that any other mapping of the 
same content can be written as ~o o - 1  with r ~ Sp. Moreover, two permutations 
~r, o-c Sp generate the same mapping, ~ o 7"/--1 = q) o 0 - - I ,  if they are in the same 
left coset of Y~, different mappings otherwise. Noting that the stabilizer of a 
mapping q~ o ~r-1 is the conjugate Young-subgroup ~r Y~cr -1, as the final ingredient, 
we arrive at 

1 
i ( / ~  J )  = ~ "  no. of ~r ~ Se such that K (P) ~< zrY~Ir -1 (49) 

Up to now this is merely a reformulation in terms of permutations taking the 
part of mappings. We may now, however, substitute a single permutation K ~ Sp 
for the subgroups K or K (P), respectively, as follows. Let K ~ Sv be such that 
the sets of  sites in its cycles (in other words: the orbits of the cyclic group" (K) 
generated by K) coincide with the K-orbits of P. Then, for any Young-subgroup 
Y~< Sp, 

g (P) <<.YC:>Ke Y. (50) 

So we may replace K (P) by K as follows 

1 
i (K , J )=~- -~  . no. of 7r~ Sp such that K ~ TrYjr  -] 

1 
- l y e ] '  no. of c r i S p  suchthat  1r-lKTr ~ Y~. (51) 

With ~r running through Sv, the conjugates of K, 7r-lK~r run through the conjugacy 
class C~ of K, 

G = {~'-l~'~l~r c SA, (52) 

and they do it with constant frequency, which then is [Sp[/[C~I. So we arrive at 

IS~l I G n  Yr 
i(K, J) I EI  IGI (53) 

These numbers are easily accessible if the cyclic notation of permutations is 
employed. Explicitly, CK is the class of permutations, which have the K-orbit  
lengths of P as their cycle lengths. Let us collect these results in terms of 

Lemma 3. Let G act by site permutations exclusively, and let J be a content. Then, 
for any subgroup K <~ G, the number of K-invariant mappings of content J is given 
by 

p! IG n YI, 
i ( K , J ) = l Y i  [G[ 

where C~ is the conjugacy class associated with the partition of  p = [P] into K-orbit 



362 W. H~isselbarth 

lengths. Y is any Young-subgroup of those associated with another partition of p: 
the one made up by the frequencies J (X)  of the ligand types, i.e. the type of gross 
formula. 

Let us illustrate this result by means of the colorations of the cube from the 
introduction. 

Example 4. A cube, the corners of which are colored black or white, its pure 
rotational symmetry being considered. So we have P = {1 , . . . ,  8}, L = {B, W}, 
G =  O, the octahedral group. Finally, we specify the gross formula t o  be 
B4W 4. 

The octahedrat group has five conjugacy classes of elements: 

i) the identity e, 
ii) six 180~ c2 about axes passing through the midpoints of opposite 

edges of the square, 
iii) three 180~ eL about axes passing through the midpoints of opposite 

faces, 
iv) eight 120~ c3 about axes passing through opposite corners, 
v) six 90~ c4 about the cL-axes again. 

Correspondingly, the list of conjugacy classes of subgroups of O starts as 
follows 

E: the class of the identity subgroup 
C2: six cyclic subgroups of the type 
CL: three cyclic subgroups of the type 
C3: four cyclic subgroups of the type 
C4: three cyclic subgroups of the type 

E,  

C2 = ( c 9 ,  
CL = ( e L ) ,  

C 3 = (c3) , 
Ca = (c,) .  

Any cyclic subgroup Cn can be extended to a dihedral group Dn ; however, the 
O 2 partly coincide. So the list continues as follows 

D2: three dihedral groups of the type D2, 

DL: one dihedral group of the type DL, 
IDa: four dihedralgroups of the type D3, 
•4: three dihedralgroups of the type  /94. 

With T and O, the classes of the tetrahedral group and of the octahedral group 
itself the list comes to an end. 

The scheme below shows a condensed version of the subgroup lattice of O: the 
collection of conjugacy classes, ordered according to H ~< N if and only if there 
are H ~ H  a n d K c ~  such that H~<K. 
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The  nex t  t ab le  is tha t  o f  the  marks ,  The  zero ent r ies  above  the  d i a g o n a l  have  
b e e n  omi t t ed ,  

Table 8. 

G ~- [[}4 D3 C4 D2 D~ C 3 C 2 C~ 

O 1 
7 1 2 
D4 1 0 1 
D~ 1 0 0 I 
C 4 1 0 I 0 
D2 1 0 1 0 
D~ 1 2 3 0 
C3 1 2 0 1 
C2 1 0 1 2 
C:~ 1 2 1 0 
E 1 2 3 4 

2 
0 2 
0 0 6 
0 0 0 
0 2 0 
2 2 6 
6 6 6 

2 
0 2 
0 0 4 
8 12 12 24 

Tab l e  9 d i sp lays ,  for  a n y  class K o f  s u b g r o u p s  K ~< O, the  p a r t i t i o n  o f  p = 8 in to  

K - o r b i t  l engths ,  the  size o f  the  c o n j u g a c y  class CK, the  c a r d i n a l i t y  o f  the  in tersec-  
t i on  C .  c~ Y wi th  a Y o u n g - s u b g r o u p  o f  type  $4 x $4, a n d ,  f inal ly,  the  n u m b e r  o f  
K - i n v a r i a n t  m a p p i n g s  wi th  gross f o r m u l a  B a w  4. We e m p l o y  the  n o t a t i o n  
[1~ '2~2 . . .  n ~o] for the  p a r t i t i o n  of  n wi th  ~ s u m m a n d s  i. 
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Table 9. 

C• ICKI ICKnS4• i(I~ B4W 4) 

0 [8] 5040 0 0 
~- [4 2 ] 1260 36 2 
D 4 [8] 5040 0 0 
D 3 [62] 3360 0 0 
C 4 [42 ] 1260 36 2 
D 2 [42 ] 1260 36 2 
D~ [42 ] 1260 36 2 
C 3 [312 ] 1120 64 4 
C 2 [24 ] 105 9 6 
C~ [24 ] 105 9 6 

[1 s] 1 1 70 

The corresponding system of  linear equations is readily solved, resulting in the 
spectrum of  orbit symmetries as follows. 

]]- D4 D3 Co D2 D~ C 3 C 2 C2 

0 1 0 0 1 1 0 1 2 0 1 

As a final remark,  based u p o n  a one- to-one correspondence  between K-invar iant  
mappings  o f  type II  and certain K- invar iant  mappings  o f  type I, a direct approach  
to the fixed-point numbers  i (K,  J)  for type II  actions (i.e. where G acts on P 
and on L, s imultaneously)  has been outl ined in [16]. The resulting closed form 
expression is, however,  a rather complicated one, and so we will not  discuss it here. 

5. Qualitative discussion: Which subsymmetries are realized? 

In the preceding paragraphs  we have provided the tools for enumerat ing substitu- 
tion patterns (i.e. orbits o f  mappings)  by substitution symmetry.  For  this purpose,  
the table o f  marks o f  the group in question is needed as well as the list of  
fixed-point numbers  o f  its various subgroups.  N o w  we are interested in learning 
which subsymmetries occur  at all among  the symmetries o f  substitution patterns. 
Of  course we can answer that question by calculating, for any subsymmetry,  the 
corresponding number  of  patterns and see whether  it turns out to be zero or not,  
but  we should  like to know whether  there is a direct and more simple approach.  
We restrict ourselves to type I actions, i.e. a group G acts on L P by ac t ing 'on  P 
exclusively, 

-1 (54) g : ~ - > ~ O ~ g  . 

Our quest ion now is: given a conjugacy class H of  subgroups o f  G, is there an 
orbit of  mappings  with symmetry  H ? Equivalently,  we may ask: given a subgroup 
H of  G, does there exist a mapping  r ~ L e with stabilizer Q = H ? For  answering 
these questions, the not ion of  a partit ion of  a set - to be distinguished f rom that 
o f  a part i t ion of  a number  - turns out to be useful. 
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Let a set P be subdivided into mutually disjoint non-empty subsets A~, 

P = U A i ,  A i n A j = ; ~ .  (55) 
i 

The collection M = {A1, A2, �9 �9 .} of the subsets A~ is called a partition of P. Often, 
the subsets Ag are called the blocks of the partition M. Another partition ~ of 
P is called finer than M (synonymously, ~ is a sub-partition of M), if ~ is 
obtained from M by partitioning its blocks A~, in other words, if any block Bj is 
contained in one of  the blocks A~. We write ~ <~ M to denote this event. Of  
course, any partition M of P is associated with a partition a of  p = [PI, which 
is made up by the block lengths a~ = I&[, 

p = • a,. (56) 
i 

There are now partitions of  the set of sites, P, associated with any subgroup 
H ~< G and with any mapping q~ ~ L v as follows. 

i) the orbit-partition Y3, of  a subgroup H ~< G is the partition of P into H-orbits.  
ii) the fibre-partition sr of  a mapping r e L v is the partition of P into the 

subsets of  preimages of  the elements in L, ~r = { A x r  4~}, where Ax  = 
{ia Plq~(i)= X}.  

Again we denote by G~ the stabilizer of ~, 

Q = { g ~  GI~;o ~Tgl = ~/~}. (57) 

We know already, that a mapping q~ is H-invariant  if and only if  g~ is constant 
on the H-orbi ts  of  P. In other words 

H ~< Q r ~ ~< s G. (58) 

Now let H and K be subgroups of G with the same orbit-partition, and let H 
be a subgroup of K. Then H cannot be the stabilizer of some mapping ~, since 
any H-invariant  map is automatically K-invariant  as well. So the conjugacy class 
H is not among the candidates for symmetries of  substitution patterns. And we 
can go on: if H and K have a common orbit partition, the same applies to the 
subgroup (H, K)  generated by H and K, and from that we conclude that among 
all the subgroups with the same orbit partition there is a maximal one, and this 
is the only candidate for being the stabilizer of  some mapping. And these maximal 
subgroups are indeed stabilizers of  mappings. Namely, let H ~< G be maximal 
in the previous sense, and let q~ ~ L e be such that M~ = NH. Then G~ -- H. As a 
final remark, the lattice of  these maximal subgroups is isomorphic to the refine- 
ment lattice of  their orbit partitions in the sense that 

H <~ K C:~ ~H <~ ~c.  (59) 

The implication H <~ K ~ NH <~ @K is evident. In reverse, let H not be a subgroup 
of K. Then H and K generate a group (H, K),  that is a genuine supergroup of 
K and has  the same orbit partition as K. But then K was not maximal, in 
contradiction to our starting assumptions. 
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Example 5 

Let P = {l, 2, 3, 4} be the corners of a square, and choose G to be C4~, i.e. the 
symmetry of the square as an object in the plane. The figure below shows its 
lattice of subgroups, together with their orbit partitions. The encircled subgroups 
are the maximal ones, for their respective partitions, while the other ones fail to 
meet this condition. The figures at the end demonstrate that it is exactly the 
conjugacy classes of these maximal subgroups that occur among the symmetries 
of substitution patterns. The subgroups of C4~ are identified as the symmetries 
of distortions of the square, where this appears to be necessary. 

Czv : ~ C~v : 

o'i: ~ ~ 

Fig. 21 
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